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Abstract—Forecasting algorithms for photovoltaic
(PV) power generation play an important role in
energy management systems. Nevertheless, the
precision of machine learning models is significantly
compromised when historical data is limited. This
situation is challenging for new plants for which a
long history of measurements is not yet available.
The unpredictable nature of the weather gives the
perception that a competitive forecast requires a
substantial amount of data and a very complicated
algorithm. However, in this manuscript, it was
found that using five historical days for the inverse
quantification of uncertainty, can implicitly describe
complex non-linear relationships between last five-
day records and day-ahead PV power generation.
The proposed approach learns the emerging
patterns across various seasons throughout the
year without relying on exogenous data such as air
temperature, wind speed, pressure, cloud cover,
and relative humidity. Results using real-world
data collected at the microgrid of the University
of Campinas (UNICAMP) confirm that our
proposed model outperforms previous state-of-
the-art deep learning models as Long short-term
memory (LSTM), Gated Recurrent Unit (GRU)
and traditional Autoregressive Integrated Moving
Average (ARIMA) statistical model, using limited
data. The proposed approach is flexible and can
be easily adapted to other PV power generation
systems with limited data.The source code is
available at https://github.com/byronacunia/Day-
Ahead-Photovoltaic-Power-Forecasting-with-
Limited-Data.git

Index Terms—Forecasting, Adaptive learning, So-
lar, photovoltaic, Statistical approach.

I. Introduction

Photovoltaic (PV) power generation is uncertain,
mainly due to the dynamic and stochastic nature of

cloud formation and movement [1]. Nevertheless, ac-
curate forecast models bring more economic and en-
vironmental benefits to microgrid owners and utilities
[2]. Forecasting methods for PV power generation can
be broadly categorized [3] into short-term forecasting
(from 1 hour to 7 days ahead), medium-term fore-
casting (one week to one month ahead), and long-
term forecasting (from one month to one year). Based
on the aforementioned time horizons, the approach
proposed in this manuscript is classified as a short-term
forecasting method. A variety of day-ahead short-term
forecasting methods for PV power generation have been
explored [4], such as: (i) meteorological models, (ii)
statistical models, (iii) machine learning models, and
(iv) hybrid models. In this case, the proposed approach
can be considered a statistical approach. Meteoro-
logical models, also known as, indirect methods, use
numerical weather prediction techniques [5], such as
satellite image processing, to forecast the intensity of
solar radiation and then convert it into PV power
generation. However, there are several disadvantages
and challenges associated with meteorological models.
For instance, small errors in weather forecasts can lead
to significant errors in PV power generation forecasts
[6]. In [7] was reported that meteorological models such
as numerical weather prediction (NWP) models are
limited in terms of accuracy by the non-linearity of
the domain equations and the spatial resolution, which
generally lies between 16-50 km. Therefore, NWP mod-
els are highly dependent on the availability of me-
teorological records. Other well-known meteorological
models use digital cameras or satellites [8] to analyze
sky images and capture cloud movements. However, the



efficiency of cloud detection and tracking techniques is
significantly influenced by camera setup [9].

Statistical models, also known as, direct forecast
methods, traditionally use statistical methods [10] such
as Autoregressive Moving Average (ARMA) [11], Au-
toregressive Integrated Moving Average (ARIMA), and
Exponential Smoothing to predict PV power genera-
tion directly without the need to forecast the solar
irradiance firstly. However, traditional statistical meth-
ods [12], such as ARIMA, require extensive historical
datasets (e.g., five years approx.) for calibration. This
is because ARIMA-like models assume that the time
series is stationary [13], but the time series of PV power
generation is non-stationary.

Machine learning models can be considered as
a regression problem [14]. Therefore, it is possible to
develop a model for mapping available measurements
to day-ahead PV power generation forecast values using
supervised learning models, such as support vector
regression [15] and neural networks [16]. Grouping sev-
eral machine learning models is known as an ensemble
model. Slightly different from the ensemble model, hy-
brid models combine models from the aforementioned
three categories, such as meteorological models with
machine learning and statistical models. However, the
precision of machine learning models is significantly
compromised when historical data of the time series is
insufficient for training the models adequately for each
season and/or weather condition [17].

Different from previous works that require an im-
portant amount of data, this paper presents a new
adaptive learning approach that uses only five days of
historical power generation to provide accurate day-
ahead production forecasts.

In summary, the main contributions of this paper are
as follows:

• A practical approach that provide feasible and
accurate day-ahead PV power forecasting method
with limited data.

• A recursive average formulation for uncertainty
quantification.

• A closed-form expression for input correlational
analyses.

II. Proposed Approach
The proposed adaptive learning approach is based

on a sun-earth geometric point-of-view. In which the
earth’s relative position with respect to the sun is repre-
sented by the solar declination δ [18]. The approximate
value of solar declination can be determined by the
approximate equation of Cooper as follows [18]:

δ = 23.45 sin
[

360
365(284 + m)

]
degrees (1)

where, m represents the day number and is defined
as, m = {1, 2, ..., 365}. PV power generation, weather
patterns, and the seasons depend on solar declination,
as shown in Fig. 1
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Fig. 1. Solar declination along one solar year

Therefore, solar power generation can be considered
a cyclo-stationary process, which can be modeled as
follows:

X(m) = A sin
[

360
365(284 + m)

]
+ N(m) (2)

Where, N(m) represents the unwanted random vari-
ations caused by the stochastic formation and move-
ment of clouds or dust particles which scatter or dis-
perse solar radiation, and A is the maximum PV power
generation value. In this case, the cyclo-stationary
process means that the data distribution changes peri-
odically with time. But using the deterministic part of
Equation (2) = A sin

[ 360
365 (284 + m)

]
is possible to find

its auto-correlation function, as follows:

RXX(τ) = E[X(m)X(m + τ)] (3)

RXX(τ) = 1
365

∫ 365

0
A sin

[
360
365(284 + m)

]
A sin

[
360
365(284 + m + τ)

]
dm

(4)

Expanding Equation (4) and after performing some
minor manipulations, the proposed auto-correlation
closed-form expression can be rewritten as,

RXX(τ) = A2

2 cos
(

360
365τ

)
(5)

In this case, τ is the amount of lag, indicating how
many days the signal is shifted when comparing it to its
original form. For instance, if τ = 0, it means there is no
delay. Hence, the autocorrelation function will return
its maximum value, indicating perfect correlation with
no shift. As τ increases, the autocorrelation function
will drop over different lags of days until zero with a
τ = 91 days. Based on the auto-correlation function
analysis, it is possible to conclude that a lag(τ) of
five days possesses a lower variance. This means that
observations within (0 < τ ≤ 5) days from a specific



TABLE I
PV Power Plant Main Components.

Component Units Power
[kW]

Total Power
[kW]

PV module 1248 0.27 336.96
String 48 7.02 336.96

Inverter 5 55.3 276.5

point yt are more useful for predicting yt than more
distant observations (τ = 91). Therefore, the proposed
local estimator in this work was defined as follows:

X(m + 1) = X(m) + γN (τ) (6)

where, γN (τ) is the measure of how much the random
variable X changes between two consecutive days, m
and m + 1. To obtain γN (τ) term from a collec-
tion of random variables {X(m), X(m − 1), X(m −
2), ..., X(m − τ)}. First was obtained a new collection
of consecutive days differences{∆(m), ∆(m−1), ∆(m−
2), ..., ∆(m − τ + 1)}, using the following equation,

∆(m) = X(m) − X(m − 1) (7)

With the aforementioned collection of differences
is possible to compute γN (τ) based on past trends,
using our novel proposed recursive average uncertainty
quantification model, as follows:

1) γN (k = 0) = ∆(m − τ + 1)
2) γN (k+1) = 1

2 (∆(m−τ+1+k)+γN (k))∀0 ≤ k < τ

III. Materials and Methods
This section presents the validation and demonstra-

tion of the proposed approach explained in Section II.
The discussions are based on the real-life data collected
at the UNICAMP - microgrid [19]. The technical infor-
mation and main components of this case study’s PV
power plant are presented in Table I.
A. Database: UNICAMP-dataset

This study employs data collected at the output
of the inverter of the PV power generation plant of
UNICAMP microgrid. The dates range from 2019-04-
05/ 00:00:00 to 2021-07-30/ 23:45:00, with a sampling
interval of 15 minutes. The 819 days were used to per-
form exhaustive assessments of our proposed approach
in different scenarios.
B. Experiments

The 814 different real-world scenarios to test the
proposed approach were generated using the data de-
tailed in Section III-A. Each test scenarios has N = 96
samples. In all test scenarios, the number of observed
days was five days = m = 5.

IV. Results and Discussion
The proposed approach for day-ahead PV power

generation forecasting, presented in Section II was
validated on CampusGrid-60 microgrid at University
of Campinas (UNICAMP).

TABLE II
Comparison of Model Performances.

Model RMSE MAE

Proposed
Approach

0.02701 0.027000

ARIMA [20] 0.08200 0.046510
LSTM [20] 0.07304 0.040300

Xgboost [20] 0.07340 0.039240

A. Quality
To evaluate the quality of the proposed approach,

three different evaluation metrics were employed: mean
absolute percentage error (MAPE), mean absolute er-
ror (MAE), and root mean square error (RMSE).
MAPE represents the relative percentage error between
the prediction and the actual value. MAE is the aver-
age of the absolute difference between the estimation
and the actual value of PV power generation. It aims
at measuring the average magnitude of errors of the
proposed method. RMSE indicates the deviation of
the estimation value and the actual value, and thus
represents the quality of estimation. The results were
summarized in Fig. 2.

Uncertainty in Root Mean Square Error (RMSE) is
caused by weather conditions, but also the quality of
historical data. However, it is important to note that
our proposed approach has a competitive RMSE with-
out exogenous variables. In this case, all RMSE values
are below 4%. In seasons with more predictable weather
patterns and clear skies, the MAE is lower compared
to rainy seasons with highly variable or unpredictable
weather. However, on average the error is stable and
competitive with state-of-the-art approaches.

Our proposed approach has a MAPE that ranges
from 1 to 10%. However in all cases on average the
proposed approach shows a MAPE lower of 2% The
non-linearities are effectively captured by our proposed
approach, as demonstrated in Figures 3 and 4.

B. Computational Efficiency
All tests were performed using a workstation with

an AMD Ryzen 7 PRO 5850U with Radeon Graphics
1.90 GHz processor and 16 GB RAM. In this case, the
average elapsed time to obtain a forecast of PV power
generation forecasting was 3 × 10−6 seconds.

C. Comparison with Prior Art Works
Table II compares our proposed approach with pre-

vious works, a hybrid deep learning approach (LSTM
model), a machine learning model (Xgboost), and a
widely used statistical model (ARIMA).

V. Conclusions
Numerical results in Table II show that our proposed

approach is more adaptable, resilient, and accurate
than the existing approaches using limited data. Our
proposed day-ahead PV power forecasting method is
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Fig. 2. a) Root mean square error (RMSE), b) Mean absolute error (MAE), and c) Mean absolute percentage error (MAPE).
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Fig. 3. The proposed approach shows the capacity to adapt
autonomously to varying seasonal conditions throughout the
year.

a valuable tool for resource-constrained environments
such as remote microgrids with new PV power plants
where data are sparse. In our research, we system-
atically evaluated our model over the entire year in
different weather conditions. The results reveal the ca-
pacity of our model to adapt autonomously to varying
seasonal conditions throughout the year. In addition,
our proposed model does not require measurement con-
version and can be easily adapted to other microgrids

with different PV power configurations.
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